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ATP-sensitive potassium channels (KATP) are widely distributed and present in a number of tissues including muscle, pancreatic
beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and
rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified
mice and genomic studies in patients have implicated KATP channels in a number of physiological and pathological processes.
In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.

Abbreviations
ABC, ATP binding cassette; AP, action potential; KATP, ATP-sensitive potassium channel; KCO, ATP-sensitive potassium
channel opening drug; PIP2, phosphatidyl 4,5-bisphosphate; SUR, sulphonylurea receptor; VSM, vascular smooth
muscle

Introduction
Two independent laboratories can lay claim to having first
described the ATP-sensitive potassium channels (KATP;
channel nomenclature follows Alexander et al., 2013). Noma
(1983) observed the appearance of an outward K+ current in
heart muscle cells when treated with metabolic poisons or
hypoxia. This was reversed by ATP injected into the cell.
Similar observations were made by another group (Trube and
Hescheler, 1984). Such channels were subsequently described
in pancreatic beta cells (Ashcroft et al., 1984), skeletal muscle
(Spruce et al., 1985), smooth muscle (Standen et al., 1989)
and neurones (Ashford et al., 1988). During this period, the
basic electrophysiological and pharmacological properties of
the channel were elucidated (Ashcroft, 1988; Noma and
Takano, 1991). In inside-out patches in ∼140 mM symmetri-
cal K+ concentrations, the single-channel conductance is
ohmic with a conductance of 70–80 pS. The lower values
sometimes noted in the literature generally have lower and
asymmetric K+ concentrations. The channel is highly selec-
tive for potassium (PNa/PK∼0.01). Activity is inhibited by the
application of ATP with a Ki of 10–500 μM with a Hill coeffi-
cient of more than 1 (generally around 2) depending on the

tissue and recording configuration. The ATP inhibition is not
dependent on ATP hydrolysis: it is not reliant on Mg2+ and
ATP can be substituted by non-hydrolysable derivatives. In
the absence of magnesium other adenine nucleotides can
inhibit channel activity but they are less potent. However, in
the presence of Mg2+ and ATP, ADP is stimulatory.

Even at the beginning of the 1990s the channels were
known to have a rich pharmacology (see Edwards and
Weston, 1993). Sulphonylureas were discovered accidentally
when it was noted that the anti-microbial sulphonamides
caused hypoglycaemia in animals. It became apparent that
stimulation of insulin release from pancreatic beta cells
occurred because of inhibition of KATP channels. There is a
family of these drugs: the most widely known are the first-
generation agents (e.g. tolbutamide, chlorpropamide) and
the more potent second-generation agents (e.g. glibencla-
mide, gliclazide, glipizide). These agents still have a place in
the management of type 2 diabetes mellitus. There are also
agents that are able to open KATP channels [KATP channel
opening drugs (KCOs)]. Intriguingly, not only are some of
these agents selective for KATP but they also exhibit a very
broad range of chemical structures: for example, diazoxide
is a benzothiadiazine, pinacidil a cyanoguanidine and
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nicorandil a pyridyl nitrate (Mannhold, 2006). Agents
known to block other K+ channels, for example, Ba2+ and
4-aminopyridine, are also active on KATP channels.

Molecular cloning

The inwardly rectifying family of potassium channels (KIR)
resisted cloning even after the elucidation of the primary
structure of voltage-gated potassium channels. It was not
until expression cloning techniques were employed that the
first cDNAs were isolated (Ho et al., 1993; Kubo et al., 1993)
and a substantial gene family with seven subfamilies was
revealed (see Nichols and Lopatin, 1997). The pore-forming α
subunits have two transmembrane domains with an intrac-
ellular N- and C-terminus. The only significant area of
homology with the voltage-gated family was the pore-
forming H5 segment responsible for potassium selectivity.
Initially, however, homology cloning approaches did not elu-
cidate an obvious candidate for the KATP channel that func-
tioned as expected in a heterologous expression system. A
critical missing component was revealed as the sulphonylu-
rea receptor (SUR) (Aguilar Bryan et al., 1995). Co-expression
of the KIR6.0 family of inwardly rectifying potassium channels
with the SUR reconstituted the KATP channel (Inagaki et al.,
1995a,c). It became apparent that there were two isoforms of
KIR6.0 (KIR6.1 and KIR6.2) and two variants of SUR (SUR1 and
SUR2 with two splice variants SUR2A and SUR2B) (Inagaki
et al., 1996; Isomoto et al., 1996; Yamada et al., 1997). SUR is
a member of the ATP-binding cassette (ABC) family of protein
(Linton and Higgins, 2007). It is most closely related to the
multidrug resistant-related proteins and they are now all clas-
sified in the ABCC family (Toyoda et al., 2008). Characteris-
tically, SUR has 17 transmembrane segments grouped into
three domains comprised of five (TMD0), six (TMD1) and six
(TMD2) helices respectively. The N-terminus is extracellular
and each of these domains is connected by intracellular
linkers and finally an intracellular C-terminus. The TMD1-
TMD2 and C-terminus contain nucleotide-binding domains
(NBDs) with Walker A and Walker B motifs and linker regions
indicative of ATP binding and hydrolysis (Linton and
Higgins, 2007). This topology is well supported by experi-
mental data (Conti et al., 2001). At the genomic level, the
genes encoding SUR1 and KIR6.2 and SUR2 and KIR6.1 are
adjacent to one another on 11p15.1 and 12p12.1, respec-
tively, and this arrangement suggests a coordinated regula-
tion of the SUR and KIR6.0 subunit (Inagaki et al., 1995a,b;
Chutkow et al., 1996). The mature KATP channel complex is a
hetero-octamer of four KIR6.0 subunits and four SUR subunits
(Clement et al., 1997; Shyng and Nichols, 1997). A diagram of
KATP channel assembly is shown in Figure 1.

SUR2A\ KIR6.2 underlies the cardiac KATP channel present
in ventricular muscle and SUR2B\ KIR6.1 that in smooth
muscle. However, there are qualifications to this simplified
picture. KIR6.1 is ubiquitously expressed and thus there exists
the potential for heteromultimerization with KIR6.2. Indeed,
this can be demonstrated with heterologous expression (Cui
et al., 2001) and it might occur potentially in the cardiac
conduction system (Yoshida et al., 2004; Bao et al., 2011b).
The issue of whether different SUR subunits can heteromul-
timerize is more controversial but practically there are not

many occasions where more than one isoform is expressed
and the evidence favours homomultimers (Giblin et al., 2002;
Tricarico et al., 2006; Cheng et al., 2008). Secondly, the com-
position of the channels may show subtle but important
anatomical variations. For example, KATP in atrial cardiac
myocytes is constituted by SUR1\KIR6.2 and this differential
tissue distribution may open the door for selective pharma-
cological manipulation in the heart in atrial fibrillation (Flagg
et al., 2008). Finally, most smooth muscle KATP channels have
been known to be functionally different for some time. Some
of these channels have a lower single-channel conductance
(∼35 pS), an absolute dependence on the provision of nucleo-
tide diphosphates for activity (‘KNDP’) and are less sensitive to
ATP inhibition (Beech et al., 1993). These properties were
reproduced by the co-expression of SUR2B and KIR6.1 subu-
nits in heterologous systems (Yamada et al., 1997; Cui et al.,
2002). However, KIR6.2 alone or together with KIR6.1 and
SUR2B might participate in some vascular beds and in non-
vascular smooth muscle (Teramoto et al., 2009).

The octameric nature of the channel complex has led to
interesting structure-function questions. This area has been
reviewed extensively (Rodrigo and Standen, 2005; Flagg et al.,
2010). The continuing crystallization of K+ channels is likely
to enrich and supersede much of this work. A high resolution
structure of the KATP channel complex or that of the KIR6.0
pore-forming subunit alone has not yet been reported. A low
resolution cryoEM study was possible and showed a compact
structure with the four SUR1 subunits interacting with KIR6.0
in the cytosolic and membrane domains (Mikhailov et al.,
2005). One interesting feature was a cleft between the SUR1
subunits by which ATP could access its binding site. The
crystal structure of KIR2.2, with and without phosphatidyl
4,5-bisphosphate (PIP2), offers insight into potential gating
mechanisms that might be revealed by high-resolution KATP

channel structures (Hansen et al., 2011). The most recent
structure of the KIR3.0 family of channels shows that these
channels possess two gates, one as described for KIR2.2 and
another in the C-terminus, potentially gated by G-protein βγ
subunits. Both gates need to be open to exhibit channel
activity (Whorton and MacKinnon, 2011).

Metabolic regulation and
mitochondrial KATP channels

One of the defining features of KATP channels is their sensi-
tivity to metabolic changes. The inhibition by ATP is deter-
mined by the KIR6.0 subunit and site-directed mutagenesis
has identified key residues in the C- and N-terminus of the
KIR6.2, in particular R50, C166, I167, T171 and K185 (Tucker
et al., 1997; 1998), and this work underpins a detailed struc-
tural model (Antcliff et al., 2005). KIR6.1 may also have
more substantial ATP sensitivity than is generally appreciated
(Babenko and Bryan, 2001), though it may depend on the
recording configuration and cellular environment (Cui et al.,
2002). It is certainly true that both KIR6.1 and KIR6.2 contain-
ing channel complexes are sensitive to metabolic poisoning
(Farzaneh and Tinker, 2008).

The issue of how SUR interacts with nucleotides is
complex and not fully resolved. Early work showed that the
SUR subunit endows the channel complex with sensitivity to
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activation by MgADP, and this is a function of the NBDs
(Gribble et al., 1997; Shyng et al., 1997). NBDs are asymmetric
in function with NBD2 binding and hydrolysing MgATP
rapidly while NBD1 binds ATP even in the absence of
Mg2+ and hydrolyses it more slowly (Ueda et al., 1997;
Bienengraeber et al., 2000). Furthermore, experiments using
vanadate and beryllium which mimic the post- and pre-
hydrolytic states, respectively, support the idea that ATP
hydrolysis at NBD2 is needed for channel activation
(Zingman et al., 2001). However, in inside-out patches,
MgADP potently activates the channel, suggesting the acti-
vated state is directly accessible without prior hydrolysis.
More recent work supports the idea that hydrolysis at NBD2
may not be necessary for activation (Ortiz et al., 2013).
Another feature that has not been resolved is the potential
dimerization of the NBDs during this cycle. In other ABC
transporters, dimerization is a necessary prerequisite for ATP
hydrolysis (Linton and Higgins, 2007). Thus, there are some
outstanding questions in this complex mechanism. In the
intact cell, studies have revealed the interaction of KATP chan-
nels with enzymes involved in cell metabolism. The cardiac

channel complex (KIR6.2\SUR2A) is able to directly interact
with adenylate kinase, creatinine kinase and lactate dehydro-
genase (Carrasco et al., 2001; Crawford et al., 2002a,b). These
interactions may make the channel sensitive to small changes
in cytoplasmic ATP within the cell and to ATP derived from
glycolysis (Weiss and Lamp, 1987).

There have been suggestions that KATP channels are
also present in mitochondria (‘mitoKATP’) (Inoue et al., 1991;
Paucek et al., 1992). In the first study, channel activity was
directly assayed to demonstrate a 10 pS channel inhibited by
ATP and glibenclamide. Subsequent work revealed a possibly
unique pharmacology in that mitoKATP was inhibited by
5-hydroxydecanoate and activated by diazoxide, properties
not shared by the cardiac sarcolemmal channel (Grover and
Garlid, 2000). However, these distinguishing features are no
longer so clear cut (Li et al., 2010). The most convincing
approach would be to directly clone the subunits. Are the
known KIR6.0 and\or SUR subunits the molecular equivalent
of mitoKATP? A number of studies have proposed that KIR6.1
might be a mitoKATP subunit specifically showing a mitochon-
drial localization or comparable pharmacology (Suzuki et al.,

KIR6x

SUR2A/KIR6.2
SUR1/KIR6.2

SUR2B/KIR6.1/KIR6.2
SUR2B/KIR6.1

Cardiac (ventricles)
Cardiac (atria)

Cardiac conduction system
Vascular smooth muscle

Inagaki et., 1996
Flagg et al., 2008
Bao et al., 2011b

Yamada et al., 1997

Figure 1
Molecular basis of the KATP channel. (A) KATP channels are composed of KIR6x (6.1 or 6.2) and SUR subunits. A tetrameric arrangement of KIR6x
subunits forms the channel pore, with each subunit comprised of two transmembrane domains (M1 and M2) with intracellular N- and C-terminus
and a pore-forming H5 region with the K+ selectivity sequence. SUR has 17 transmembrane segments split into three domains, TMD0-2. TMD0
and L0 interact and modulate gating of KIR6. TMD1-2 and the C-terminus contain the NBD1 and NBD2 with Walker A and B motifs where ATP
binding and hydrolysis take place. SUR is also the pharmacological target of KCO compounds such as pinacidil and diazoxide, and sulphonylurea
drugs, such as glibenclamide and tolbutamide. The mature KATP channel is a hetero-octameric structure of KIR6x and SURx subunits.
(B) Tissue-specific composition of KATP channels in the cardiovascular system.
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1997; Liu et al., 2001); however, the commercial antibodies
may be detecting other unrelated proteins in mitochondria
(Foster et al., 2008). If KIR6.1 does not underlie mitoKATP chan-
nels what are the other possibilities? One group isolated a
complex of a succinate dehydrogenase, mitochondrial ABC
protein 1, phosphate carrier, adenine nucleotide translocator
and ATP synthase (Ardehali et al., 2004). However, none of
these proteins contain the canonical elements in the H5
segment of the established potassium channels and structures.
Furthermore, some of the drugs used seem to have effects or are
metabolized in other pathways (Das et al., 2003; Hanley et al.,
2005). The most recent work in this area may address some of
these issues (Foster et al., 2012). These authors isolated KIR1.2
from the inner mitochondrial membranes of bovine heart and
cell imaging confirmed the mitochondrial localization of
KIR1.2, albeit after heterologous expression. In pharmacologi-
cal studies, overexpression of KIR1.2 along with the use of
shRNA to silence the protein, implicated this channel subunit
as underlying mitoKATP and having a role in cellular protection.
These are potentially exciting findings but await confirmation
and validation using more in vivo approaches.

Regulation through cell
signalling pathways

KATP channels have a tendency to run down in ATP-free solu-
tions and the channel activity can be ‘refreshed’ with low
concentrations of MgATP. This dependence was not under-
stood until channel activity was shown to be absolutely
dependent on membrane phosphoinositides, in particular
PIP2 (Hilgemann and Ball, 1996; Fan and Makielski, 1997;
Shyng and Nichols, 1998). The ATP is needed for the synthe-
sis of plasma membrane PIP2 via PI kinases and the PIP2

antagonizes ATP inhibition and leads to channel opening
(Shyng and Nichols, 1998; Pratt et al., 2011). Direct evidence
for the involvement of membrane PIP2 has been obtained
using an elegant binary membrane recruitment system and
this works for KATP channel regulation also (Suh et al., 2006;
Quinn et al., 2008). There is likely to be a direct interaction
with the protein as the channel, KIR2.1 and KIR2.2 in this case,
can be purified and reconstituted in liposomes of fixed lipid
composition (D’Avanzo et al., 2010). Furthermore, recent
crystal structures show PIP2 binding in the homologous KIR2.2
leads to C-terminal domain translocation to interact with the
transmembrane domain and this change opens the helix
bundle gate which occludes the lower pore.

In smooth muscle, downstream activation of PKA
through various receptors coupled to the stimulatory
G-protein Gs, such as adenosine A2, β adrenoreceptors, calci-
tonin gene-related peptide and prostacyclin, leads to
vasodilatation. A major contribution to the vascular smooth
muscle (VSM) cell hyperpolarization is the opening of KATP

channels (Standen et al., 1989; Nelson et al., 1990; Rodrigo
and Standen, 2005). Subsequent molecular studies on
KIR6.1\SUR2B revealed that this was likely due to the direct
phosphorylation of both channel subunits (T633, S1387 and
S1465 on SUR2B; S385 on KIR6.1) (Quinn et al., 2004; Shi
et al., 2007). Further regulation may occur through dephos-
phorylation of these residues via the Ca2+-dependent phos-

phatase calcineurin (Wilson et al., 2000; Orie et al., 2009).
The receptor\PKA\KATP axis may be selectively localized
within membrane compartments of the cell. Thus, there is
evidence that PKA is largely present in a particulate fashion
through interaction with A-kinase anchoring proteins
(Hayabuchi et al., 2001a). Furthermore, the channel complex
may be localized to caveolae and this may be important for
signalling (Sampson et al., 2004; 2007; Davies et al., 2010).

Vasoconstrictors, such as angiotensin II and endothelin-1,
activate PKC and there is evidence that KATP channel activity
can be modulated through such pathways (Kubo et al., 1997;
Cole et al., 2000; Hayabuchi et al., 2001b; Thorneloe et al.,
2002; Quinn et al., 2003; Sampson et al., 2007). The regula-
tion is Ca2+ independent and mediated by PKCε (Hayabuchi
et al., 2001b; Quinn et al., 2003). Direct channel phosphor-
ylation of KIR6.1 is likely responsible with a cluster of serine
residues in the distal C-terminus playing a key role (Quinn
et al., 2003; Shi et al., 2008). There may also be effects on
channel internalization and recycling perhaps via caveolae
(Jiao et al., 2008). Furthermore, vasoconstrictors may inhibit
PKA as this would act as an additional inhibitory input to KATP

channels (Hayabuchi et al., 2001b). One mechanism that has
been little explored is the role of PIP2 depletion in addition to
PKC activation. However, it should be noted that the modu-
lation is essentially abolished by PKC inhibitors and that
KIR6.1 seems to have a relatively high affinity for PIP2, sug-
gesting channel activity may be maintained in the face of
substantial depletion (Quinn et al., 2003; Sampson et al.,
2007). It should be emphasized that PKC-dependent modu-
lation of VSM KATP channel activity is only likely to account
for a part of the action of vasoconstrictors.

A group of endothelial mediators – the so-called gas-
otransmitters – may also influence VSM KATP channel func-
tion (Zhao et al., 2001; Mustafa et al., 2009b). The action of
NO is of course well known but the endothelium also gener-
ates two other gasotransmiters, CO and H2S. H2S is produced
largely by cystathionine γ-lyase and production is regulated
by the activation of Ca2+-calmodulin, in a manner analogous
to that of NO (Yang et al., 2008). The effector mechanism is
thought to be the activation of KATP channels in VSMs
through direct modification of channel cysteines, though
other mechanisms are possible (Zhao et al., 2001; Cheng
et al., 2004; Mustafa et al., 2009a).

Thus, the vascular KATP channel and the cloned equivalent
KIR6.1\SUR2B are subject to prominent hormonal regulation
through direct subunit phosphorylation. What is known
about the regulation of KIR6.2 complexes particularly in
cardiac muscle? This issue is particularly pertinent for PKC
modulation as this has been implicated as being central in
cellular protection and preconditioning in cardiac cells
(Yellon and Downey, 2003). In early studies, PKC modulation
was thought to activate sarcolemmal cardiac KATP; however, it
now appears that there is a biphasic regulation with activa-
tion followed by a slower inhibitory response corresponding
to channel internalization (Light et al., 1996; Hu et al., 2003).
The phenomena are critically dependent on the prevailing
conditions of study. We thought for some time that PKC
activation did not modulate KIR6.2 (Quinn et al., 2003).
However, in intact cells and with higher pipette Ca2+ in
whole cell recordings, we did see biphasic modulation. The
inhibitory response was due to channel internalization and
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occurred because of phosphorylation of S372 in KIR6.2 (Aziz
et al., 2012). The regulation of sarcolemmal KATP channels by
PKA has been little studied. With KIR6.2\SUR1, PKA phospho-
rylation leads to increased channel activity through residues
in SUR1 and KIR6.2 that are homologous to those in SUR2B
and KIR6.1 (Gonoi et al., 1999; Lin et al., 2000; Quinn et al.,
2004). Indeed, a plausible a priori case could be made for a
contribution of sarcolemmal cardiac KATP in the action poten-
tial (AP) shortening occurring with the increased heart rate in
exercise, in addition to the slowly activating component of
the delayed rectifier current. One interesting feature is the
subcellular localization of KATP channels that appear to be
concentrated at the neck of the T-tubule, suggesting activa-
tion could have a significant influence on excitation-
contraction coupling (Korchev et al., 2000).

Pathophysiological function of KATP

channels in the cardiovascular system

Generally, three types of study contribute to the understand-
ing of the physiological role of KATP channels: ex vivo and in

vivo pharmacological studies, functional studies in geneti-
cally engineered mice, and human genetics (Figure 2).

Cardiac protection
Paradoxically, there has been substantial focus on the role of
the cardiac sarcolemmal KATP channel in pathobiology (see
below), without really addressing the issue of what physi-
ological role the channel might perform in ventricular myo-
cytes. The use of mice with global genetic deletion of KIR6.2
(KIR6.2 null) has suggested some intriguing possibilities. These
animals have an attenuated ability to perform high-intensity
exercise and are predisposed to catecholamine cardiotoxicity
(Zingman et al., 2002). However, it is not yet clear if it is the
deletion in cardiac myocytes that is critical. Channel func-
tion will also be impaired in skeletal muscle, pancreatic beta
cells and in central neurons, and all of these could have an
influence on the integrated physiological function. Mice with
cardiac overexpression of a dominant negative KIR6.2 subunit
had a proarrhythmic phenotype and impaired exercise toler-
ance (Tong et al., 2006). The study of mice with conditional
deletion of KIR6.2. (and SUR2) in cardiac myocytes is likely to
be highly informative.

Vmdepolarized Vmhyperpolarized

KIR6.1

KIR6.2

Figure 2
Functional roles of KIR6.1 and KIR6.2 in the cardiovascular system. (A) KATP channels comprising KIR6.1 in vascular smooth muscle (VSM) cells
regulate vascular tone by controlling the membrane potential and subsequently the influx of Ca2+ through L-type voltage-dependent Ca2+

channels. KATP channel activity in VSM can be modulated by the PKC (inhibitory) and PKA (activation) signalling pathways and metabolic stress
such as hypoxia and ischaemia. (B) KIR6.2-containing KATP channels are predominant in cardiomyocytes, where they are involved in AP
repolarization. Activation of KATP by PKC or metabolic insults such as ischaemia and/or hypoxia leads to shortening of AP duration, decreased influx
of Ca2+ and reduced contractility, thus preventing Ca2+ overload and ATP preservation.
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Sarcolemmal KATP channels are essentially closed under
normal metabolic conditions and hence are thought not to
contribute towards the coupling of membrane excitation and
contraction in the basal physiological state. In keeping with
this, studies in ventricular myocytes from KIR6.2 null mice
show that AP duration and contractile function are normal
(Suzuki et al., 2001). However, exposure to severe metabolic
insults such as during hypoxia and ischaemia leads to
opening of cardiac KATP channels. Metabolic stress leads to
substantial shortening of the AP and attenuated contraction
(Lederer et al., 1989; Venkatesh et al., 1991), and these effects
are absent when KIR6.2 is not present (Li et al., 2000), or in the
presence of a KATP channel blocker (Venkatesh et al., 1991).
Primarily, opening of KATP channels is likely to be a protective
mechanism because the increase in K+ conductance stabilizes
the resting membrane potential, shortens the AP and reduces
Ca2+ influx, resulting in the conservation of intracellular
energy stores and preventing calcium overload. In support of
this proposal, application of the KCO pinacidil enhanced
ischaemia-induced AP shortening, early contractile failure
and preserved ATP levels (McPherson et al., 1993), and in
hearts from KIR6.2 null mice, contraction was prolonged and
AP duration unaffected during ischaemia (Suzuki et al., 2002).
In addition, pinacidil activation of sarcolemmal KATP channels
reduced reperfusion-induced Ca2+ overload in cardiac myo-
cytes, and ablation of KATP channels in vivo gives rise to a
greater susceptibility to Ca2+ overload and impairs contractile
recovery. Moreover, exercise causes significant remodelling of
cardiac KATP channels. Specifically, exercise induces an
increase in KATP channel expression (∼40%) in mouse ventri-
cles promoting AP shortening in response to an increased
heart rate, and these effects are abolished when non-
functional KATP channels are transgenically expressed
(Zingman et al., 2011). Interestingly, overexpression of
SUR2A in cardiac tissue leads to a phenotype protected from
ischaemia (Du et al., 2006). An intracellular pool of KATP chan-
nels may serve as a reservoir to modulate membrane surface
density in stress conditions (Bao et al., 2011a).

There is a substantial body of work proposing that
mitoKATP may also have a role in cardioprotection and this has
been reviewed in detail elsewhere (Yellon and Downey, 2003).
It is worth stating that there are persuasive data favouring the
involvement of sarcolemmal cardiac KATP channels in these
phenomena, at least in mice. In KIR6.2 null mice, the protec-
tive effect of ischaemic preconditioning was abolished and
recovery of contractile function was compromised (Suzuki
et al., 2002; 2003; Gumina et al., 2003). Moreover, the pre-
conditioning effect of diazoxide was also absent (Suzuki et al.,
2003).

Cardiac arrhythmia
The initial opening of KATP channels in response to a meta-
bolic insult is cardioprotective; however, activation of KATP

channels also induces early repolarization, thereby shorten-
ing the QT interval and reducing the refractory period, hence
predisposing to re-entrant arrhythmias. Typical ECG changes
observed during ischaemic insults include ST elevation or
depression suggesting changes in repolarization. These
ischaemia-induced changes in ECG characteristics are ame-
liorated by the KATP channel blocker glibenclamide and
induced by the KCO pinacidil (in the absence of ischaemia)

consistent with KATP channel activation underlying these
features (Kubota et al., 1993). In support, KIR6.2 null mice
are not prone to ST elevation in response to ischaemia
(Li et al., 2000). However, ischaemia-induced ST elevation
was observed in SUR2 null mice (Chutkow et al., 2002). KIR6.1
null mice also have episodes of cardiac ischaemia accompa-
nied by ST elevation (Miki et al., 2002). This was originally
postulated to be due to the absence of VSM KATP channels;
however, it is likely this is not strictly the case as when SUR2B
was selectively re-introduced to smooth muscle in SUR2 null
mice, the phenotype persisted (Kakkar et al., 2006). These
data suggest that KIR6.1 in heart may also be involved in early
repolarization and ischaemia-induced arrhythmia and is con-
sistent with recent studies showing heterogeneity of KATP

subunit composition in different regions of the heart (Flagg
et al., 2008; Bao et al., 2011b). Early repolarization patterns in
the ECG has historically been considered to be of little con-
sequence and is commonly observed in healthy males and
athletes. However, there is now evidence to suggest that the
early repolarization pattern (‘J wave syndromes’) may be
associated with increased risk of ventricular fibrillation
(Antzelevitch, 2012). A clear association of KATP channels with
early repolarization syndromes was made when Haissaguerre
et al. (2009) found a rare variant of KCNJ8 (KIR6.1) in a patient
with idiopathic ventricular fibrillation and prominent early
repolarization. In further independent studies, the same mis-
sense mutation of a highly conserved serine to leucine
(S422L) was discovered in five more patients (Medeiros-
Domingo et al., 2010; Barajas-Martinez et al., 2012). Both
studies showed an increased current density when KIR6.1-
S422L was co-expressed heterologously with SUR2A.
Mechanistically, this gain of function in the mutant channel
can be explained by the decreased ATP sensitivity of KIR6.1-
S422L channels compared with wild-type (WT) channels
(Barajas-Martinez et al., 2012).

Most studies of cardiac arrhythmias resulting from myo-
cardial ischaemia have been focused predominantly on the
abnormalities of ventricular rhythm and relatively little is
known about the role of KATP channels in abnormal atrial
rhythm. A recent study has shown that activation of KATP

channels by β-adrenoceptor-induced metabolic stress pro-
vides a substrate for atrial tachyarrhythmias in mouse iso-
lated heart (Kim et al., 2012). In support, pinacidil shortens
atrial AP duration and increases arrhythmia inducibility in
human right atrial and right ventricular wall (Fedorov
et al., 2011). Furthermore, atrial electrical remodelling and
increased arrhythmia inducibility in a murine model of salt-
induced hypertension have been shown to be associated with
increased KATP current and SUR1 expression (Lader et al.,
2011). A recent screening of patients with atrial fibrillation
found two patients with the KIR6.1-S422L variant (Delaney
et al., 2012).

Heart failure, hypertrophy and cell swelling
Cardiac hypertrophy is triggered by a prolonged increase in
cardiac workload. When transverse aortic constriction was
applied in KIR6.2 null mice or in mice with cardiac specific
overexpression of SUR1 which paradoxically disrupts cardiac
sarcolemmal KATP channel function, increased left ventricular
hypertrophy was observed (Yamada et al., 2006; Hu et al.,
2008). Interestingly, there seems to be an interaction between

BJPATP-sensitive K+ channels

British Journal of Pharmacology (2014) 171 12–23 17



cardiac KATP channel expression and the activity of the PPAR-γ
coactivator, PGC-1α. Decreased channel function leads to
decreased activity at the PGC-1α promoter partly via FOXO-1
repression (Hu et al., 2008). Remodelled ventricular cardio-
myocytes from rats subjected to coronary occlusion show
up-regulation of KIR6.1, especially around the infarct zone
(Isidoro et al., 2007). Congestive heart failure or infarction in
human hearts leads to an increased AP duration and sensi-
tivity to potassium channel openers in both atria and ventri-
cles (Fedorov et al., 2011). There are a variety of other
molecules/enzymes that have been shown to be involved in
the progression from compensated hypertrophy to heart
failure possibly by their interactions with KATP channels.
Angiotensin II and TNF-α expression is positively correlated
to that of KIR6.1 in failing rat myocardium or cultured car-
diomyocytes and negatively correlated with KIR6.2 (Isidoro
et al., 2009). Furthermore, cardiomyocytes treated with these
were responsive to diazoxide, indicating increased expression
of KIR6.1/SUR2B in these cells as part of the progression to
hypertrophy (Isidoro et al., 2007; 2009).

Various mutations have been identified within KATP

channel subunits which confer susceptibility to cardiomyo-
pathy, hypertrophy and heart failure. A cohort of patients
with dilated cardiomyopathy allowed the identification of a
frameshift mutation leading to a premature stop codon at
Leu1524 and a missense mutation A1513T in SUR2A. Both
mutations are located in the NBD2 and compromise the
ability of ATP to be hydrolysed (Bienengraeber et al., 2004). In
KIR6.2, a non-synonymous polymorphism leading to the
coding change, E23K, was identified in 18% of heart failure
patients (Reyes et al., 2009) and is also known to lead to an
increased risk of type 2 diabetes (Gloyn et al., 2003). Both
heterozygous and homozygous patients have the same
resting heart rates and show similar degrees of left ventricular
dysfunction and remodelling. When these homozygous
patients are exercised, they show a reduced heart rate, oxygen
consumption and peak VO2. Other missense mutations in
SUR2A within transmembrane domains have also been iden-
tified to cause activation of the channel in the rare Cantu
syndrome, characterised by cardiac hypertrophy and cardio-
megaly (Harakalova et al., 2012). Although the human and
murine experimental data are very different in nature, there
seems to be inconsistency in that both reduction and
increases in KATP channel activity, can result in cardiac
hypertrophy.

Excessive changes in cell volume in the heart can result in
the alteration of the structural integrity of the cells affecting
cellular functions and cell death. These changes can arise as a
result of an intracellular accumulation of metabolites that
increase cellular osmolality, allow water to enter the cell,
increase the cell volume and alter ion channel function.
Reduction of cardiomyocyte swelling during myocardial
ischaemia may be a potential mechanism of cardioprotection
(Shi et al., 2009). KATP has been shown to be regulated during
cell volume changes with atrial KATP channels opening in
response to cell swelling leading to AP shortening (Saegusa
et al., 2005). The absence of KIR6.2 in cardiac myocytes iso-
lated from KIR6.2 null mice prevents cell swelling from occur-
ring whereas in WT mice there is exaggerated cell swelling
which can be disrupted by the addition of diazoxide (Prasad
et al., 2006). The use of diazoxide in some of the studies

appears to be more complicated. Although cell swelling could
be diminished by the addition of diazoxide, the addition
of HMR1098 and 5-hydroxydecanoate did not reverse the
events initially suggesting that diazoxide may be acting via a
mechanism separate from the activation of KATP channels
(Maffit et al., 2012).

Vascular reactivity and hypertension
The modulation of VSM KATP currents by vasoactive agents
suggests the channel may be important for blood pressure
control. In VSM cells from KIR6.1 and SUR2 null mice KATP

currents were absent, whereas cells from KIR6.2 null mice
exhibited normal KATP currents (Suzuki et al., 2001; Chutkow
et al., 2002; Miki et al., 2002). As well as providing direct
evidence for the molecular composition of the VSM KATP

channel, KIR6.1 and SUR2 null mice exhibit hyper-
contractility of the coronary vasculature and are prone to
early sudden death due to coronary artery spasm (Chutkow
et al., 2002; Miki et al., 2002). SUR2 null mice also show focal
narrowing of the coronary arteries and have significantly
elevated blood pressure (Chutkow et al., 2002). Interestingly,
restoration of the vascular KATP channel in SUR2 null mice
does not protect against a rise in baseline coronary artery
perfusion pressure suggesting a role for KATP channels from
tissues other than VSM (Kakkar et al., 2006). Specifically,
SUR2B RNA has been detected in endothelium and it is
believed that heteromeric KIR6.1/ KIR6.2 in combination with
SUR2B could form an endothelial KATP channel (Yoshida et al.,
2004). In mice expressing endothelium-specific dominant-
negative KIR6.1 subunits, basal coronary perfusion pressure
and ET-1 concentrations were substantially elevated suggest-
ing a role for endothelial KATP channels in the regulation of
vascular tone (Malester et al., 2007).

Further evidence for the role of VSM KATP channels in
vascular tone regulation comes from studies of hypertensive
animal models where there is substantial remodelling of KATP

channels in vascular beds (Blanco-Rivero et al., 2008; Tajada
et al., 2012). KATP channels in hypertensive phenotypes show
altered vascular reactivity probably as a result of impaired and
fewer KATP channels. VSM cells from hypertensive animals
are significantly depolarized and KCO compounds have little
effect on membrane potential compared with normotensive
animals (Tajada et al., 2012). The KCO iptakalim has been put
forward as a promising anti-hypertensive agent for mild to
moderate essential hypertension (Sikka et al., 2012). Interest-
ingly, on a mechanistic level iptakalim has also been shown
to inhibit ET-1 release and synthesis and increase NO release
and NOS activity in aortic endothelial cells (Gao et al., 2009).
Additionally, there are data to suggest that KCO compounds
such as iptakalim have therapeutic potential as a treatment
for pulmonary hypertension (Sikka et al., 2012).

Sepsis
The role of KATP channels in sepsis is complex (Buckley et al.,
2006). There is pharmacological evidence that channel acti-
vation occurs in septic shock leading to hypotension and this
can be reversed by glibenclamide (Matsuda and Hattori,
2007). There is also evidence for increased activity of these
channels but that their pharmacology alters such that they
becomes unresponsive to sulphonylureas and only direct
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pore blockers can inhibit activity (O’Brien et al., 2009), and
this is consistent with the lack of clinical efficacy (Warrillow
et al., 2006; Morelli et al., 2007). However, animals, and also
flies, with global genetic deletion of the channel are predis-
posed to an early and substantial survival disadvantage in
sepsis (Kane et al., 2006; Croker et al., 2007). Furthermore, the
expression of KIR6.1 is regulated via Toll-like receptors and
NF-κB and the increase in expression of the current is postu-
lated to underlie the poor response to vasoconstrictors in
septic shock (Shi et al., 2010). The exact mechanism for the
survival disadvantage is unclear but inappropriate coronary
artery vasoconstriction during increased cardiac demand is
one proposal. However, the pathophysiological circulatory
changes in severe sepsis are actually profound and wide-
spread. These include hypotension, hyporesponsiveness to
vasoconstrictors, microvascular dysfunction, endothelial dys-
function, and increased vascular and capillary permeability
(Matsuda and Hattori, 2007). The absence of KIR6.1 in
both smooth muscle and endothelium may promote these
adaptations.

Conclusions

The physiological role of KATP channels is well defined in the
pancreatic beta cell. Recent work has begun to reveal similar
pathophysiological importance in the function of cardiac
muscle, specialized conduction tissues in the heart and of
VSM (Figure 2). These channels have a rich existing pharma-
cology that could be exploited to develop novel therapeutic
agents for the treatment of cardiovascular disease.
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